Understanding Your Risks with Monte Carlos

June 5th, 2009 6:55 pm Category: Enterprise Resource Planning, Network Design, Operations Research, Optimization, Risk Management, Scheduling, Supply Chain Planning, by: John Hughes

0 Flares 0 Flares ×

What is a Monte Carlo model and what good is it? We’re not talking a type of car produced by General Motors under the Chevy nameplate. “Monte Carlo” is the name of a type of mathematical computer model. A Monte Carlo is merely a tool for figuring out how risky some particular situation is. It is a method to answer a question like: “what are the odds that such-and-such event will happen”. Now a good statistician can calculate an answer to this kind of question when the circumstances are simple or if the system that you’re dealing with doesn’t have a lot of forces that work together to give the final result. But when you’re faced with a complicated situation that has several processes that interact with each other, and where luck or chance determines the outcome of each, then calculating the odds for how the whole system behaves can be a very difficult task.

Let’s just get some jargon out of the way. To be a little more technical, any process which has a range of possible outcomes and where luck is what ultimately determines the actual result is called “stochastic”, “random” or “probabilistic”. Flipping a coin or rolling dice are simple examples. And a “stochastic system” would be two or more of these probabilistic events that interact.

Imagine that the system you’re interested in is a chemical or pharmaceutical plant where to produce one batch of material requires a mixing and a drying step. Suppose there are 3 mixers and 5 dryers that function completely independent of one another; the department uses a ‘pool concept’ where any batch can use any available mixer and any available dryer. However, since there is not enough room in the area, if a batch completes mixing but there is no dryer available, then the material must sit in the mixer and wait. Thus the mixer can’t be used for any other production. Finally, there are 20 different materials that are produced in this department, and each of them can have a different average mixing and drying time.

Now assume that the graph of the process times for each of the 8 machines looks somewhat like what’s called a ‘bell-shaped curve’. This graph, with it’s highest point (at the average) right in the middle and the left and right sides are mirror images of each other, is known as a Normal Distribution. But because of the nature of the technology and the machines having different ages, the “bells” aren’t really centered; their average values are pulled to the left or right so the bell is actually a little skewed to one side or the other. (Therefore, these process times are really not Normally distributed.)

If you’re trying to analyze this department, the fact that the equipment is treated as a pooled resource means it’s not a straightforward calculation to determine the average length of time required to mix and dry one batch of a certain product. And complicating the effort would be the fact that the answer depends on how many other batches are then in the department and what products they are. If you’re trying to modify the configuration of the department, maybe make changes to the scheduling policies or procedures, or add/change the material handling equipment that moves supplies to and from this department, a Monte Carlo model would be the best approach to performing the analysis.

In a Monte Carlo simulation of this manufacturing operation, the model would have a clock and a ‘to-do’ list of the next events that would occur as batches are processed through the unit. The first events to go onto this list would be requests to start a batch, i.e. the paperwork that directs or initiates production. The order and timing for the appearance of these batches at the department’s front-door could either be random or might be a pre-defined production schedule that is an input to the model.

The model “knows” the rules of how material is processed from a command to produce through the various steps in manufacturing and it keeps track of the status (empty and available, busy mixing/drying, possibly blocked from emptying a finished batch, etc.) of all the equipment. And the program also follows the progress and location of each batch. The model has a simulated clock, which keeps moving ahead and as it does, batches move through the equipment according to the policies and logic that it’s been given. Each batch moves from the initial request stage to being mixed, dried and then out the back-door. At any given point in simulated time, if there is no equipment available for the next step, then the batch waits (and if it has just completed mixing it might prevent another batch from being started).

What sets a Monte Carlo model apart however is that when the program needs to make a decision or perform an action where the outcome is a matter of chance, it has the ability to essentially roll a pair of dice (or flip a coin, or “choose straws”) in order to determine the specific outcome. In fact, since rolling dice means that each number has an equal chance of “coming up”, a Monte Carlo model actually contains equations known as “probability distributions”, which will pick a result where certain outcomes have more or less likelihood of occurrence. It’s through the use of these distributions, that we can accurately reflect those skewed non-Normal process times of the equipment in the manufacturing department.

The really cool thing about these distributions is that if the Monte Carlo uses the same distribution repeatedly, it might get a different result each time simply due to the random nature of the process. Suppose that the graph below represents the range of values for the process time of material XYZ (one of the 20 products) in one of the mixers. Notice how the middle of the ‘bell’ is off-center to the right (it’s skewed to the right).


So if the model makes several repeated calls to the probability distribution equation for this graph, sometimes the result will be the 2.0-2.5 hrs, other times 3.5-4.0 hrs, and on some occasions >4hrs. But in the long run, over many repetitions of this distribution, the proportion of times for each of the time bands will be the values that are in the graph (5%, 10%, 15%, 20%, etc.) and were used to define the equation.

So to come back to the manufacturing simulation, as the model moves batches through production, when it needs to determine how much time will be required for a particular mixer or dryer, it runs the appropriate probability equation and gets back a certain process time. In the computer’s memory, the batch will continue to occupy the machine (and the machine’s status will be busy) until the simulation clock gets to the correct time when the process duration has completed. Then the model will check the next step required for the batch and it will move it to the proper equipment (if there is one available) or out of the department all together.

In this way then, the model would continue to process batches until it either ran out of batches in the production schedule that was an input, or until the simulation clock reached some pre-set stopping point. During the course of one run, the computer would have been monitoring the process and recording in memory whatever statistics were relevant to the goal of the analysis. For example, the model might have kept track of the amount of time that certain equipment was block
ed from emptying XYZ to the next step. Or if the aim of the project was to calculate the average length of time to produce a batch, the model would have been following the overall duration of each batch from start to finish in the simulated department.

The results from just one run of the Monte Carlo model however are not sufficient to be used as a basis for any decisions. The reason for this is the fact that this is a stochastic system where chance determines the outcome. We can’t really rely on just one set of results, because just through the “luck of the draw” the process times that were picked by those probability distribution equations might have been generally on the high or low side. So the model is run repeatedly some pre-set number of repetitions, say 100 or 500, and results of each of these is saved.

Once all of the Monte Carlo simulations have been accumulated, it’s possible to make certain conclusions. For example, it might turn out that the overall process time through the department was 10 hrs or more on 8% of the times. Or the average length of blocked time, when batches are prevented from moving to the next stage because there was no available equipment, was 12 hrs; or that the amount of blocked time was 15hrs or more on 15% of the simulations.

With information like this, a decision maker would be able to weigh the advantages of adding/changing specific items of equipment as well as modifications to the department’s policies, procedures, or even computer systems. In a larger more complicated system, a Monte Carlo model such as the one outlined here, could help to decrease the overall plant throughput time significantly. At some pharmaceutical plants for instance, where raw materials can be extremely high valued, decreasing the overall throughput time by 30% to 40% would represent a large and very real savings in the value of the work in process inventory.

Hopefully, this discussion has helped to clarify just what a Monte Carlo model is, and how it is built. This kind of model accounts for the fundamental variability that is present is almost all decision making. It does not eliminate risk or prevent a worst-case scenario from actually occurring. Nor does it guarantee a best-case outcome either. But it does give the business manager added insight into what can go wrong or right and the best ways to handle the inherent variability of a process.

This article was written by John Hughes, Profit Point’s Production Scheduling Practice Leader.

To learn more about our supply chain optimization services, contact us here.

0 Flares LinkedIn 0 Google+ 0 Twitter 0 Email -- Buffer 0 0 Flares ×
Contact Us Now

610.645.5557

Contact Us

Contact UsInfo

Please call:
+1 (610) 645-5557

Meet our Team

Our Clients

Published articles

  • A Fresh Approach to Improving Total Delivered Cost
  • Filling the Gap: Tying ERP to the Business Strategy
  • 10 Guidelines for Supply Chain Network Infrastructure Planning
  • Making Sound Business Decisions in the Face of Complexity
  • Leveraging Value in the Executive Suite
  • Should you swap commodities with your competitors?
  • Supply Chain: Time to Experiment
  • Optimization Technology Review
  • The Future of Network Planning: On the Verge of a New Cottage Industry?
  • Greening Your Supply Chain… and Your Bottom Line
  • Profit Point’s CEO and CTO Named a "Pro to Know" by Supply & Demand Chain Executive Magazine

Ready to optimize?

610.645.5557

0 Flares LinkedIn 0 Google+ 0 Twitter 0 Email -- Buffer 0 0 Flares ×